document.write( "Question 624807: The cost in millions of dollars for a company to manufacture x thousand automobiles is given by the function C(x) = 3x^2 - 12x + 28. Find the number of automobiles that must be produced to minimize the cost.\r
\n" ); document.write( "\n" ); document.write( "a) 2 thousand automobiles
\n" ); document.write( "b) 4 thousand automobiles
\n" ); document.write( "c) 6 thousand automobiles
\n" ); document.write( "d) 16 thousand automobiles
\n" ); document.write( "

Algebra.Com's Answer #393200 by oscargut(2103)\"\" \"About 
You can put this solution on YOUR website!
Solution:\r
\n" ); document.write( "\n" ); document.write( "x-coordinate of the minimum is: 12/2(3) = 2\r
\n" ); document.write( "\n" ); document.write( "Answer: a) 2 thousand automobiles \r
\n" ); document.write( "\n" ); document.write( "If you have any doubt or if you have more problems my e-mail is: \r
\n" ); document.write( "\n" ); document.write( "mthman@gmail.com
\n" ); document.write( "
\n" );