document.write( "Question 622759: Consider the set Z of all Integers and an integer m > 1. For all integers x and y  Z, if x – y is divisible by m, then show that this
\n" ); document.write( "defines an equivalence relation on Z. An equivalence relation is reflective, symmetric, and transitive.
\n" ); document.write( "

Algebra.Com's Answer #391617 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let be the set of all integers and let \ 1\">, and accept the notation to mean that is divisible by .\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Prove that the set defines an equivalence relation:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1. Since , \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " is reflexive.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2. Let \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thus is symmetric.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3. Let and \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thus is transitive.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " is reflexive, symmetric, and transitive is an equivalence relation.\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "
\n" ); document.write( "
\n" );