document.write( "Question 620155: 64x^2+16y^2+320x-192y+960=0
\n" ); document.write( "need in ellipse form plus foci, verts, and ecc\r
\n" ); document.write( "\n" ); document.write( "I got for the formula 4(x+5/2)^2 + (y-6)^2 =1 not sure if this is right
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #389995 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
64x^2+16y^2+320x-192y+960=0
\n" ); document.write( "need in ellipse form plus foci, verts, and ecc
\n" ); document.write( "***
\n" ); document.write( "64x^2+16y^2+320x-192y+960=0
\n" ); document.write( "complete the square
\n" ); document.write( "64x^2+320x+16y^2-192y+960=0
\n" ); document.write( "64(x^2+5+25/4)+16(y^2-12y+36)=-960+400+576
\n" ); document.write( "64(x+5/2)^2+16(y-6)^2=16
\n" ); document.write( "(x+5/2)^2/(16/64)+(y-6)^2=1
\n" ); document.write( "(x+5/2)^2/(1/4)+(y-6)^2=1
\n" ); document.write( "This is an equation of ellipse with vertical major axis.
\n" ); document.write( "Its standard form: (x-h)^2/b^2+(y-k)^2/a^2=1, a>b, (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given equation:
\n" ); document.write( "center:(-5/2,6)
\n" ); document.write( "a^2=1
\n" ); document.write( "a=1
\n" ); document.write( "vertices: (-5/2,6±a)=(-5/2, 6±1)= (-5/2,5) and (-5/2,7)
\n" ); document.write( "b^2=1/4
\n" ); document.write( "b=√(1/4)=1/2
\n" ); document.write( "..
\n" ); document.write( "c^2=a^2-b^2=1-1/4=3/4
\n" ); document.write( "c=√(3/4)≈.87
\n" ); document.write( "foci: (-5/2,6±c)=(-5/2, 6±.87)= (-5/2,5.13) and (-5/2,6.87)
\n" ); document.write( "..
\n" ); document.write( "eccentricity: c/a=c/1≈.87\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );