document.write( "Question 618495: How do you find the vertex, focus, directrix, and axis of symmetry of the parabola?\r
\n" ); document.write( "\n" ); document.write( "x^2-2x+8y+9=0
\n" ); document.write( "

Algebra.Com's Answer #388951 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
How do you find the vertex, focus, directrix, and axis of symmetry of the parabola?
\n" ); document.write( "x^2-2x+8y+9=0
\n" ); document.write( "complete he square
\n" ); document.write( "(x^2-2x+1)+8y+9-1=0
\n" ); document.write( "(x-1)^2=-8y-8
\n" ); document.write( "(x-1)^2=-8(y+1)
\n" ); document.write( "This is an equation of a parabola that opens downwards
\n" ); document.write( "Form of equation: (x-h)^2=-4p(y-k), (h,k)=(x,y) coordinates of vertex
\n" ); document.write( "For given equation:
\n" ); document.write( "vertex:(1,-1)
\n" ); document.write( "axis of symmetry: x=1
\n" ); document.write( "4p=8
\n" ); document.write( "p=2
\n" ); document.write( "focus: (1,-1-p)=(1,-1-2)=(1,-3) (p units below vertex on axis of symmetry)
\n" ); document.write( "directrix: y=-1+p=-1+2=1 (p units above vertex on axis of symmetry)
\n" ); document.write( "
\n" );