document.write( "Question 618495: How do you find the vertex, focus, directrix, and axis of symmetry of the parabola?\r
\n" );
document.write( "\n" );
document.write( "x^2-2x+8y+9=0 \n" );
document.write( "
Algebra.Com's Answer #388951 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! How do you find the vertex, focus, directrix, and axis of symmetry of the parabola? \n" ); document.write( "x^2-2x+8y+9=0 \n" ); document.write( "complete he square \n" ); document.write( "(x^2-2x+1)+8y+9-1=0 \n" ); document.write( "(x-1)^2=-8y-8 \n" ); document.write( "(x-1)^2=-8(y+1) \n" ); document.write( "This is an equation of a parabola that opens downwards \n" ); document.write( "Form of equation: (x-h)^2=-4p(y-k), (h,k)=(x,y) coordinates of vertex \n" ); document.write( "For given equation: \n" ); document.write( "vertex:(1,-1) \n" ); document.write( "axis of symmetry: x=1 \n" ); document.write( "4p=8 \n" ); document.write( "p=2 \n" ); document.write( "focus: (1,-1-p)=(1,-1-2)=(1,-3) (p units below vertex on axis of symmetry) \n" ); document.write( "directrix: y=-1+p=-1+2=1 (p units above vertex on axis of symmetry) \n" ); document.write( " |