document.write( "Question 618477: factorise it 3y^2+13y+14
\n" ); document.write( "can u plz explain im confused
\n" ); document.write( "

Algebra.Com's Answer #388930 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"3y%5E2%2B13y%2B14\", we can see that the first coefficient is \"3\", the second coefficient is \"13\", and the last term is \"14\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"3\" by the last term \"14\" to get \"%283%29%2814%29=42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"42\" (the previous product) and add to the second coefficient \"13\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"42\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"42\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,7,14,21,42\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-7,-14,-21,-42\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"42\".\r
\n" ); document.write( "\n" ); document.write( "1*42 = 42
\n" ); document.write( "2*21 = 42
\n" ); document.write( "3*14 = 42
\n" ); document.write( "6*7 = 42
\n" ); document.write( "(-1)*(-42) = 42
\n" ); document.write( "(-2)*(-21) = 42
\n" ); document.write( "(-3)*(-14) = 42
\n" ); document.write( "(-6)*(-7) = 42\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"13\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1421+42=43
2212+21=23
3143+14=17
676+7=13
-1-42-1+(-42)=-43
-2-21-2+(-21)=-23
-3-14-3+(-14)=-17
-6-7-6+(-7)=-13
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"6\" and \"7\" add to \"13\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"6\" and \"7\" both multiply to \"42\" and add to \"13\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"13y\" with \"6y%2B7y\". Remember, \"6\" and \"7\" add to \"13\". So this shows us that \"6y%2B7y=13y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3y%5E2%2Bhighlight%286y%2B7y%29%2B14\" Replace the second term \"13y\" with \"6y%2B7y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283y%5E2%2B6y%29%2B%287y%2B14%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3y%28y%2B2%29%2B%287y%2B14%29\" Factor out the GCF \"3y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3y%28y%2B2%29%2B7%28y%2B2%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283y%2B7%29%28y%2B2%29\" Combine like terms. Or factor out the common term \"y%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3y%5E2%2B13y%2B14\" factors to \"%283y%2B7%29%28y%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"3y%5E2%2B13y%2B14=%283y%2B7%29%28y%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283y%2B7%29%28y%2B2%29\" to get \"3y%5E2%2B13y%2B14\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );