document.write( "Question 617173: What are the vertex, focus, and dirtectrix of the parabola with the given equation?\r
\n" ); document.write( "\n" ); document.write( "24y = x^2 - 10x + 145
\n" ); document.write( "

Algebra.Com's Answer #388191 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
What are the vertex, focus, and dirtectrix of the parabola with the given equation?
\n" ); document.write( "24y = x^2 - 10x + 145
\n" ); document.write( "complete the square
\n" ); document.write( "24y=(x^2-10x+25)+145-25
\n" ); document.write( "24y=(x-5)^2+120
\n" ); document.write( "(x-5)^2=24y-120
\n" ); document.write( "(x-5)^2=24(y-5)
\n" ); document.write( "This is an equation for a parabola that opens upwards.
\n" ); document.write( "Its standard form: (x-h)^2=4p(y-k)< (h,k)=(x,y) coordinates of the vertex.
\n" ); document.write( "For given equation:(x-5)^2=24(y-5)
\n" ); document.write( "vertex:(5,5)
\n" ); document.write( "4p=24
\n" ); document.write( "p=6
\n" ); document.write( "focus: (5,5+p)
\n" ); document.write( "=(5,5+6)
\n" ); document.write( "=(5,11)
\n" ); document.write( "directrix: y=5-p=5-6=-1
\n" ); document.write( "
\n" ); document.write( "
\n" );