document.write( "Question 616915: 1. You are given the coordinates of the vertex (2,-2) and of a point (-9,3) on a parabola. Find the coefficients for the equation of the parabola.
\n" ); document.write( "Put in y=ax^2+bx+c form.\r
\n" ); document.write( "\n" ); document.write( "2.Given the functions
\n" ); document.write( "f(x) = 5x2 − 4x + 2
\n" ); document.write( "g(x) = 3x + 6
\n" ); document.write( "Compute the following (you must simplify each polynomial as far as possible to receive full credit) Use the ^ (shift-6 on the keyboard) to enter a power. So to enter x2 + 3x + 1, you would type x^2 + 3x + 1.
\n" ); document.write( "What is f(g(x))?
\n" ); document.write( "What is g(f(x))?
\n" ); document.write( "

Algebra.Com's Answer #388017 by scott8148(6628)\"\" \"About 
You can put this solution on YOUR website!
1. in vertex form ___ y = a(x - 2)^2 - 2
\n" ); document.write( "___ substituting the given point (to find a) ___ 3 = a(-9 - 2)^2 - 2 ___ 5 = 121a ___ a = 5/121
\n" ); document.write( "___ y = (5/121)(x - 2)^2 - 2 ___ y = (5/121)x^2 - (20/121)x - 238/121\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2. f(g(x)) = 5(3x+6)^2 - 4(3x+6) + 2 = 45x^2 + 180x + 180 - 12x - 24 + 2 = 45x^2 + 168x + 158\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(f(x)) = 3(5x^2 - 4x + 2) + 6 = 15x^2 - 12x + 6 + 6 = 15x^2 - 12x + 12
\n" ); document.write( "
\n" );