document.write( "Question 615731: Complete the square, then graph and identify the vertex, focus, directrix, and endpoints of the latus rectum for the equation -14x+2y^2-8y=20 \n" ); document.write( "
Algebra.Com's Answer #387486 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Complete the square, then graph and identify the vertex, focus, directrix, and endpoints of the latus rectum for the equation -14x+2y^2-8y=20
\n" ); document.write( "-14x+2y^2-8y=20
\n" ); document.write( "complete the square
\n" ); document.write( "2(y^2-4y+4)=20+14x+8
\n" ); document.write( "2(y-2)^2=14x+28
\n" ); document.write( "divide by 2
\n" ); document.write( "(y-2)^2=7x+14
\n" ); document.write( "(y-2)^2=7(x+2)
\n" ); document.write( "This is an equation of a parabola that opens rightwards.
\n" ); document.write( "Its standard form: (y-k)^2=4px, (h,k)=(x,y) coordinates of the vertex
\n" ); document.write( "For given equation:(y-2)^2=7(x+2)
\n" ); document.write( "vertex:(-2,2)
\n" ); document.write( "axis of symmetry: y=2
\n" ); document.write( "4p=7
\n" ); document.write( "p=7/4
\n" ); document.write( "Focus: (-2+p,2)=(-2+7/4,2)=(-1/4,2) (p distance to the right of the vertex on the axis of symmetry)
\n" ); document.write( "Directrix: x=(-2-p)=(-2-7/4)=-15/4 (p distance to the left of the vertex on the axis of symmetry)
\n" ); document.write( "latus rectum:
\n" ); document.write( "length of latus rectum=4p=7
\n" ); document.write( "2p=7/2
\n" ); document.write( "end points: (-1/4,2±2p)
\n" ); document.write( "=(-1/4,2±7/2)
\n" ); document.write( "=(-1/4,-1.5) and (-1/4,5.5)
\n" ); document.write( "see graph below:
\n" ); document.write( "y=(7(x+2))^.5+2\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );