document.write( "Question 615993: Can someone PLEASE help me with this problem? THANK YOU!\r
\n" );
document.write( "\n" );
document.write( "Let z1 = r1(cos 1 + isin 1) and z2 = r2(cos 2 + isin 2) be two complex
\n" );
document.write( "numbers. Show that if z2 (doesn't equal to) 0, then (z1/z2)=(r1/r2)[cos(1 2) + isin(1 2)]. \n" );
document.write( "
Algebra.Com's Answer #387434 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Let z1 = r1(cos 1 + isin 1) and z2 = r2(cos 2 + isin 2) be two complex \n" ); document.write( "numbers. Show that if z2 (doesn't equal to) 0, then (z1/z2)=(r1/r2)[cos(1 2) + isin(1 2)]. \n" ); document.write( "--- \n" ); document.write( "z1/z2 = [r1cos(1) + r1isin(1)]/[r2cos(2) + r2isin(2)] \n" ); document.write( "------ \n" ); document.write( "Multiply numerator and denominator by [r2cos(2)-r2isin(2)] to get: \n" ); document.write( "------- \n" ); document.write( "z1/z2 \n" ); document.write( "= [[r1cos(1) + r1isin(1)][r2cos(2)-r2isin(2)]]/[(r2cos(2))^2 + (r2sin(2))^2]] \n" ); document.write( "---- \n" ); document.write( "I think I'll let you continue this. \n" ); document.write( "======================================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |