document.write( "Question 615993: Can someone PLEASE help me with this problem? THANK YOU!\r
\n" ); document.write( "\n" ); document.write( "Let z1 = r1(cos 1 + isin 1) and z2 = r2(cos 2 + isin 2) be two complex
\n" ); document.write( "numbers. Show that if z2 (doesn't equal to) 0, then (z1/z2)=(r1/r2)[cos(1 2) + isin(1 2)].
\n" ); document.write( "

Algebra.Com's Answer #387434 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Let z1 = r1(cos 1 + isin 1) and z2 = r2(cos 2 + isin 2) be two complex
\n" ); document.write( "numbers. Show that if z2 (doesn't equal to) 0, then (z1/z2)=(r1/r2)[cos(1 2) + isin(1 2)].
\n" ); document.write( "---
\n" ); document.write( "z1/z2 = [r1cos(1) + r1isin(1)]/[r2cos(2) + r2isin(2)]
\n" ); document.write( "------
\n" ); document.write( "Multiply numerator and denominator by [r2cos(2)-r2isin(2)] to get:
\n" ); document.write( "-------
\n" ); document.write( "z1/z2
\n" ); document.write( "= [[r1cos(1) + r1isin(1)][r2cos(2)-r2isin(2)]]/[(r2cos(2))^2 + (r2sin(2))^2]]
\n" ); document.write( "----
\n" ); document.write( "I think I'll let you continue this.
\n" ); document.write( "=======================================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );