document.write( "Question 615983: factor the trinomial 24r^2-6r-45 \n" ); document.write( "
Algebra.Com's Answer #387425 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"24r%5E2-6r-45\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3%288r%5E2-2r-15%29\" Factor out the GCF \"3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"8r%5E2-2r-15\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"8r%5E2-2r-15\", we can see that the first coefficient is \"8\", the second coefficient is \"-2\", and the last term is \"-15\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"8\" by the last term \"-15\" to get \"%288%29%28-15%29=-120\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-120\" (the previous product) and add to the second coefficient \"-2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-120\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-120\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-120\".\r
\n" ); document.write( "\n" ); document.write( "1*(-120) = -120
\n" ); document.write( "2*(-60) = -120
\n" ); document.write( "3*(-40) = -120
\n" ); document.write( "4*(-30) = -120
\n" ); document.write( "5*(-24) = -120
\n" ); document.write( "6*(-20) = -120
\n" ); document.write( "8*(-15) = -120
\n" ); document.write( "10*(-12) = -120
\n" ); document.write( "(-1)*(120) = -120
\n" ); document.write( "(-2)*(60) = -120
\n" ); document.write( "(-3)*(40) = -120
\n" ); document.write( "(-4)*(30) = -120
\n" ); document.write( "(-5)*(24) = -120
\n" ); document.write( "(-6)*(20) = -120
\n" ); document.write( "(-8)*(15) = -120
\n" ); document.write( "(-10)*(12) = -120\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1201+(-120)=-119
2-602+(-60)=-58
3-403+(-40)=-37
4-304+(-30)=-26
5-245+(-24)=-19
6-206+(-20)=-14
8-158+(-15)=-7
10-1210+(-12)=-2
-1120-1+120=119
-260-2+60=58
-340-3+40=37
-430-4+30=26
-524-5+24=19
-620-6+20=14
-815-8+15=7
-1012-10+12=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"10\" and \"-12\" add to \"-2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"10\" and \"-12\" both multiply to \"-120\" and add to \"-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-2r\" with \"10r-12r\". Remember, \"10\" and \"-12\" add to \"-2\". So this shows us that \"10r-12r=-2r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"8r%5E2%2Bhighlight%2810r-12r%29-15\" Replace the second term \"-2r\" with \"10r-12r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%288r%5E2%2B10r%29%2B%28-12r-15%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2r%284r%2B5%29%2B%28-12r-15%29\" Factor out the GCF \"2r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2r%284r%2B5%29-3%284r%2B5%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282r-3%29%284r%2B5%29\" Combine like terms. Or factor out the common term \"4r%2B5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3%288r%5E2-2r-15%29\" then factors further to \"3%282r-3%29%284r%2B5%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"24r%5E2-6r-45\" completely factors to \"3%282r-3%29%284r%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"24r%5E2-6r-45=3%282r-3%29%284r%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"3%282r-3%29%284r%2B5%29\" to get \"24r%5E2-6r-45\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );