document.write( "Question 615650: How do you find the equation, vertex, focus, directrix, and latus rectum of the following:\r
\n" );
document.write( "\n" );
document.write( "-14x+2y^2-8y=20 \n" );
document.write( "
Algebra.Com's Answer #387278 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! How do you find the equation, vertex, focus, directrix, and latus rectum of the following: \n" ); document.write( "-14x+2y^2-8y=20 \n" ); document.write( "complete the square \n" ); document.write( "2(y^2-4y+4)=20+14x+8 \n" ); document.write( "2(y-2)^2=14x+28 \n" ); document.write( "divide by 2 \n" ); document.write( "(y-2)^2=7x+14 \n" ); document.write( "(y-2)^2=7(x+2) \n" ); document.write( "This is an equation of a parabola that opens rightwards. \n" ); document.write( "Its standard form: (y-k)^2=4px, (h,k)=(x,y) coordinates of the vertex \n" ); document.write( "For given equation:(y-2)^2=7(x+2) \n" ); document.write( "vertex:(-2,2) \n" ); document.write( "axis of symmetry: y=2 \n" ); document.write( "4p=7 \n" ); document.write( "p=7/4 \n" ); document.write( "Focus: (-2+p,2)=(-2+7/4,2)=(-1/4,2) (p distance to the right of the vertex on the axis of symmetry) \n" ); document.write( "Directrix: x=(-2-p)=(-2-7/4)=-15/4 (p distance to the left of the vertex on the axis of symmetry) \n" ); document.write( "latus rectum: \n" ); document.write( "length of latus rectum=4p=7 \n" ); document.write( "2p=7/2 \n" ); document.write( "end points: (-1/4,2±2p) \n" ); document.write( "=(-1/4,2±7/2) \n" ); document.write( "=(-1/4,-1.5) and (-1/4,5.5)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |