document.write( "Question 614863: the sequence is defined recursively. Write the first five terms.
\n" ); document.write( "a1=2, a2=5; an=an-2 - 3an-1.
\n" ); document.write( "

Algebra.Com's Answer #386862 by ashipm01(26)\"\" \"About 
You can put this solution on YOUR website!
The first two terms, a[1] and a[2], are the base cases. The following terms of the sequence are defined in terms of previous terms of the sequence (recursive sequence).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the first two terms are given in the problem statement:
\n" ); document.write( "a[1] = 2
\n" ); document.write( "a[2] = 5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The next term, a[3], is given by a[3-2] - 3 * a[3-1].
\n" ); document.write( "a[3] = a[3-2] - 3 * a[3-1]
\n" ); document.write( "= a[1] - 3 * a[2]
\n" ); document.write( "= 2 - (3*5)
\n" ); document.write( "= -13\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then a[4] is given in terms of a[4-2] and q[4-1]:
\n" ); document.write( "a[4] = a[4-2] - 3 * a[4-1]
\n" ); document.write( "= a[2] - 3 * a[3]
\n" ); document.write( "= 5 - (3 * -13)
\n" ); document.write( "= 44\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Likewise, a[5] is given in terms of a[5-2] and a[5-1]:
\n" ); document.write( "a[5] = a[5-2] - 3 * a[5-1]
\n" ); document.write( "= a[3] - 3 * a[4]
\n" ); document.write( "= -13 - (3 * 44)
\n" ); document.write( "= -145\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the first five terms in the sequence are: {2, 5, -13, 44, -145}
\n" ); document.write( "
\n" );