document.write( "Question 614581: Find the verticies of the hyperboloa defined by this equation:\r
\n" ); document.write( "\n" ); document.write( "(x-2)^2 over 36 minus (y-2)^2 over 4 equals 1.
\n" ); document.write( "

Algebra.Com's Answer #386625 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Find the verticies of the hyperboloa defined by this equation:
\n" ); document.write( "(x-2)^2 over 36 minus (y-2)^2 over 4 equals 1
\n" ); document.write( "**
\n" ); document.write( "(x-2)^2/36-(y-2)^2/4=1
\n" ); document.write( "This is an equation of a hyperbola with horizontal transverse axis.
\n" ); document.write( "Its standard form: (x-h)^2/a^2-(y-k)^2/b^2=1, (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given equation: (x-2)^2/36-(y-2)^2/4=1
\n" ); document.write( "center: (2,2)
\n" ); document.write( "a^2=36
\n" ); document.write( "a=√36=6
\n" ); document.write( "vertices: (2±a,2)=(2±6,2)=(-4,2) and (8,2)
\n" ); document.write( "
\n" );