document.write( "Question 614548: Solve for x: \n" );
document.write( "
Algebra.Com's Answer #386601 by sophxmai(62)![]() ![]() You can put this solution on YOUR website! take the log of both sides and then separate the 2(3^x) by the log(m)+log(n)=log(mn) rule.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "log(2(3^x))=log(7(5^x)) \n" ); document.write( "log(2)+log(3^x)=log(7)+log(5^x) \n" ); document.write( "log(2)+xlog(3)=log(7)+xlog(5) \n" ); document.write( "xlog(3)-xlog(5)=log(7)-log(2) \n" ); document.write( "x(log(3)-log(5))=log(7)-log(2) \n" ); document.write( "x=(log(7)-log(2))/(log(3)-log(5)) \n" ); document.write( "x=-2.452427 <--i used a calculator\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=(log(7)-log(2))/(log(3)-log(5)) can be rewritten using the rule log(m)-log(n)=log(m/n) \n" ); document.write( "x=log(7/2)/log(3/5) \n" ); document.write( " |