document.write( "Question 613262: Given the following revenue and cost functions, find the x-value that
\n" ); document.write( "makes profit a maximum. (Re2all that profit equals revenue minus cost.)
\n" ); document.write( "R(x) = 55x - 2x^2; C(x) = 21x + 98
\n" ); document.write( "

Algebra.Com's Answer #385919 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
 
\n" ); document.write( "Hi,
\n" ); document.write( "R(x) = 55x - 2x^2
\n" ); document.write( "C(x) = 21x + 98
\n" ); document.write( "P(x) = 55x - 2x^2 -(21x + 98)
\n" ); document.write( "P(x) = -2x^2 + 34x - 98
\n" ); document.write( " x = 8.5 makes max profit
\n" ); document.write( " \n" ); document.write( "
\n" );