document.write( "Question 612352: FInd the standard form of an ellipse with verticies (-5,-6) and (-5,8) and a minor axis of 6 \n" ); document.write( "
Algebra.Com's Answer #385362 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
FInd the standard form of an ellipse with verticies (-5,-6) and (-5,8) and a minor axis of 6
\n" ); document.write( "**
\n" ); document.write( "This is an ellipse with vertical major axis.
\n" ); document.write( "Its standard form of equation: (x-h)^2/b^2+(y-k)^2/a^2=1, a>b, (h,k)=(x,y) coordinates of center
\n" ); document.write( "x-coordinate of center=-5
\n" ); document.write( "y-coordinate of center= (8-6)/2=1 (midpoint formula)
\n" ); document.write( "center: (-5,1)
\n" ); document.write( "length of vertical major axis=14 (-6 to 8)=2a
\n" ); document.write( "a=7
\n" ); document.write( "a^2=49
\n" ); document.write( "..
\n" ); document.write( "length of minor axis=6=2b
\n" ); document.write( "b=3
\n" ); document.write( "b^2=9
\n" ); document.write( "..
\n" ); document.write( "Equation of given ellipse:
\n" ); document.write( " (x+5)^2/9+(y-1)^2/49=1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );