document.write( "Question 612352: FInd the standard form of an ellipse with verticies (-5,-6) and (-5,8) and a minor axis of 6 \n" ); document.write( "
Algebra.Com's Answer #385362 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! FInd the standard form of an ellipse with verticies (-5,-6) and (-5,8) and a minor axis of 6 \n" ); document.write( "** \n" ); document.write( "This is an ellipse with vertical major axis. \n" ); document.write( "Its standard form of equation: (x-h)^2/b^2+(y-k)^2/a^2=1, a>b, (h,k)=(x,y) coordinates of center \n" ); document.write( "x-coordinate of center=-5 \n" ); document.write( "y-coordinate of center= (8-6)/2=1 (midpoint formula) \n" ); document.write( "center: (-5,1) \n" ); document.write( "length of vertical major axis=14 (-6 to 8)=2a \n" ); document.write( "a=7 \n" ); document.write( "a^2=49 \n" ); document.write( ".. \n" ); document.write( "length of minor axis=6=2b \n" ); document.write( "b=3 \n" ); document.write( "b^2=9 \n" ); document.write( ".. \n" ); document.write( "Equation of given ellipse: \n" ); document.write( " (x+5)^2/9+(y-1)^2/49=1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |