document.write( "Question 611729: I have to solve the following using trigonometric identities:
\n" );
document.write( "1-cos^2(x)*1-tan^2(x)=sin^2(x)-2sin^4(x)/ 1-sin^2(x)\r
\n" );
document.write( "\n" );
document.write( "Using the trigonometric identities, I have to prove that it is one, preferably using the left-hand side.\r
\n" );
document.write( "\n" );
document.write( "I would appreciate any help that is given.\r
\n" );
document.write( "\n" );
document.write( "Thanks! \n" );
document.write( "
Algebra.Com's Answer #385295 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! 1-cos^2(x)*1-tan^2(x)=sin^2(x)-2sin^4(x)/ 1-sin^2(x) \n" ); document.write( "** \n" ); document.write( "Starting with left side: \n" ); document.write( "(1-cos^2x)(1-tan^2x) \n" ); document.write( "=sin^2x(1-sin^2x/cos^2x) \n" ); document.write( "=sin^2x[(cos^2x-sin^2x)/cos^2x] \n" ); document.write( "=[sin^2x(1-sin^2x-sin^2x)]/(1-sin^2x) \n" ); document.write( "=[sin^2x(1-2sin^2x)]/(1-sin^2x) \n" ); document.write( "=sin^2x-2sin^4x)/(1-sin^2x) \n" ); document.write( "verified: \n" ); document.write( "left side=right side \n" ); document.write( " |