document.write( "Question 611044: Ten years from now, A will be twice as old as B. Five years ago, A was three times as old as B. What are the present ages of A and B?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #384746 by radh(108)\"\" \"About 
You can put this solution on YOUR website!
Let's map this out mathematically
\n" ); document.write( "Then years from now, (+10) A will be twice as old as B (2b). Five years ago, (-5) A was three times as old as B (3b).\r
\n" ); document.write( "\n" ); document.write( "

So, that means:
\n" ); document.write( "\"2b%2B10=a\"
\n" ); document.write( "and
\n" ); document.write( "\"3b-5=a\".\r
\n" ); document.write( "\n" ); document.write( "

Let's simplify that and move both variables on one side of the equation to get:
\n" ); document.write( "\"2b-a=-10\"
\n" ); document.write( "and
\n" ); document.write( "\"3b-a=5\"\r
\n" ); document.write( "\n" ); document.write( "

We're going to substitute this into the solver. x=b and y=a. \r
\n" ); document.write( "\n" ); document.write( "

\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: Using Cramer's Rule to Solve Systems with 2 variables

\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"system%282%2Ax%2B-1%2Ay=-10%2C3%2Ax%2B-1%2Ay=5%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " First let \"A=%28matrix%282%2C2%2C2%2C-1%2C3%2C-1%29%29\". This is the matrix formed by the coefficients of the given system of equations.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Take note that the right hand values of the system are \"-10\" and \"5\" which are highlighted here:
\n" ); document.write( " \"system%282%2Ax%2B-1%2Ay=highlight%28-10%29%2C3%2Ax%2B-1%2Ay=highlight%285%29%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " These values are important as they will be used to replace the columns of the matrix A.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now let's calculate the the determinant of the matrix A to get \"abs%28A%29=%282%29%28-1%29-%28-1%29%283%29=1\". Remember that the determinant of the 2x2 matrix \"A=%28matrix%282%2C2%2Ca%2Cb%2Cc%2Cd%29%29\" is \"abs%28A%29=ad-bc\". If you need help with calculating the determinant of any two by two matrices, then check out this solver.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notation note: \"abs%28A%29\" denotes the determinant of the matrix A.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " ---------------------------------------------------------
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now replace the first column of A (that corresponds to the variable 'x') with the values that form the right hand side of the system of equations. We will denote this new matrix \"A%5Bx%5D\" (since we're replacing the 'x' column so to speak).
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"A%5Bx%5D=%28matrix%282%2C2%2Chighlight%28-10%29%2C-1%2Chighlight%285%29%2C-1%29%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now compute the determinant of \"A%5Bx%5D\" to get \"abs%28A%5Bx%5D%29=%28-10%29%28-1%29-%28-1%29%285%29=15\". Once again, remember that the determinant of the 2x2 matrix \"A=%28matrix%282%2C2%2Ca%2Cb%2Cc%2Cd%29%29\" is \"abs%28A%29=ad-bc\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " To find the first solution, simply divide the determinant of \"A%5Bx%5D\" by the determinant of \"A\" to get: \"x=%28abs%28A%5Bx%5D%29%29%2F%28abs%28A%29%29=%2815%29%2F%281%29=15\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So the first solution is \"x=15\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " ---------------------------------------------------------
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " We'll follow the same basic idea to find the other solution. Let's reset by letting \"A=%28matrix%282%2C2%2C2%2C-1%2C3%2C-1%29%29\" again (this is the coefficient matrix).
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now replace the second column of A (that corresponds to the variable 'y') with the values that form the right hand side of the system of equations. We will denote this new matrix \"A%5By%5D\" (since we're replacing the 'y' column in a way).
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"A%5Bx%5D=%28matrix%282%2C2%2C2%2Chighlight%28-10%29%2C3%2Chighlight%285%29%29%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now compute the determinant of \"A%5By%5D\" to get \"abs%28A%5By%5D%29=%282%29%285%29-%28-10%29%283%29=40\".
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " To find the second solution, divide the determinant of \"A%5By%5D\" by the determinant of \"A\" to get: \"y=%28abs%28A%5By%5D%29%29%2F%28abs%28A%29%29=%2840%29%2F%281%29=40\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So the second solution is \"y=40\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " ====================================================================================
\n" ); document.write( "
\n" ); document.write( " Final Answer:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So the solutions are \"x=15\" and \"y=40\" giving the ordered pair (15, 40)
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Once again, Cramer's Rule is dependent on determinants. Take a look at this 2x2 Determinant Solver if you need more practice with determinants.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "

So, person A is 40 and person B is 15. :) \n" ); document.write( "

\n" );