document.write( "Question 610503: how do you factor r squared+15r+56 completely? \n" ); document.write( "
Algebra.Com's Answer #384426 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"r%5E2%2B15r%2B56\", we can see that the first coefficient is \"1\", the second coefficient is \"15\", and the last term is \"56\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"56\" to get \"%281%29%2856%29=56\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"56\" (the previous product) and add to the second coefficient \"15\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"56\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"56\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,7,8,14,28,56\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-7,-8,-14,-28,-56\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"56\".\r
\n" ); document.write( "\n" ); document.write( "1*56 = 56
\n" ); document.write( "2*28 = 56
\n" ); document.write( "4*14 = 56
\n" ); document.write( "7*8 = 56
\n" ); document.write( "(-1)*(-56) = 56
\n" ); document.write( "(-2)*(-28) = 56
\n" ); document.write( "(-4)*(-14) = 56
\n" ); document.write( "(-7)*(-8) = 56\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"15\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1561+56=57
2282+28=30
4144+14=18
787+8=15
-1-56-1+(-56)=-57
-2-28-2+(-28)=-30
-4-14-4+(-14)=-18
-7-8-7+(-8)=-15
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"7\" and \"8\" add to \"15\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"7\" and \"8\" both multiply to \"56\" and add to \"15\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"15r\" with \"7r%2B8r\". Remember, \"7\" and \"8\" add to \"15\". So this shows us that \"7r%2B8r=15r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%5E2%2Bhighlight%287r%2B8r%29%2B56\" Replace the second term \"15r\" with \"7r%2B8r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%5E2%2B7r%29%2B%288r%2B56%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r%2B7%29%2B%288r%2B56%29\" Factor out the GCF \"r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r%2B7%29%2B8%28r%2B7%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%2B8%29%28r%2B7%29\" Combine like terms. Or factor out the common term \"r%2B7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"r%5E2%2B15r%2B56\" factors to \"%28r%2B8%29%28r%2B7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"r%5E2%2B15r%2B56=%28r%2B8%29%28r%2B7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28r%2B8%29%28r%2B7%29\" to get \"r%5E2%2B15r%2B56\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "
\n" );