document.write( "Question 610056: What are the asymptotes of the hyperbola given by the equation (y^2/1)-(x^2/121)=1? \n" ); document.write( "
Algebra.Com's Answer #384264 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! What are the asymptotes of the hyperbola given by the equation \n" ); document.write( "(y^2/1)-(x^2/121)=1? \n" ); document.write( "** \n" ); document.write( "This is an equation of a hyperbola with vertical transverse axis. \n" ); document.write( "Its standard form: (y-k)^2/a^2-(x-h)^2)/b^2=1, (h,k)=(x,y) coordinates of center \n" ); document.write( "For given equation: (y^2/1)-(x^2/121)=1 \n" ); document.write( "center: (0,0) \n" ); document.write( "a^2=1 \n" ); document.write( "a=1 \n" ); document.write( "b^2=121 \n" ); document.write( "b=√121=11 \n" ); document.write( ".. \n" ); document.write( "Asymptotes are straight lines that go thru the center (0,0) \n" ); document.write( "Standard form of equation for straight lines: y=mx+b, m=slope, b=y-intercept \n" ); document.write( "For hyperbolas with vertical transverse axis: \n" ); document.write( "slopes of asymptotes=±a/b=1/11 \n" ); document.write( "equations of asymptotes: \n" ); document.write( "y=±x/11+b \n" ); document.write( "since center is at (0,0), y-intercept, b=0 \n" ); document.write( "equation of asymptotes: \n" ); document.write( "y=x/11 \n" ); document.write( "and \n" ); document.write( "y=-x/11\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |