document.write( "Question 610057: What are the directrices of the hyperbola given by the equation (y^2/49)-(x^2/9)=1? \n" ); document.write( "
Algebra.Com's Answer #384262 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
What are the directrices of the hyperbola given by the equation
\n" ); document.write( "(y^2/49)-(x^2/9)=1?
\n" ); document.write( "**
\n" ); document.write( "This is an equation of a hyperbola with vertical transverse axis.
\n" ); document.write( "Its standard form: (y-k)^2/a^2-(x-h)^2=1, (h,k)=(x,y) coordinates of center.
\n" ); document.write( "For given equation: (y^2/49)-(x^2/9)=1
\n" ); document.write( "center: (0,0)
\n" ); document.write( "a^2=49
\n" ); document.write( "a=√49=7
\n" ); document.write( "b^2=9
\n" ); document.write( "c^2=a^2+b^2=49+9=58
\n" ); document.write( "c=√58≈7.6
\n" ); document.write( "..
\n" ); document.write( "eccentricity, e=c/a=√58/7
\n" ); document.write( "directrices=±a/e=±a^2/c=±49/√58≈±6.43\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );