document.write( "Question 605546: factor.write prime if the expression cannot be factored : S exponent2 -S-6
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #382625 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"s%5E2-s-6\", we can see that the first coefficient is \"1\", the second coefficient is \"-1\", and the last term is \"-6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-6\" to get \"%281%29%28-6%29=-6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-6\" (the previous product) and add to the second coefficient \"-1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-6\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-6\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-6\".\r
\n" ); document.write( "\n" ); document.write( "1*(-6) = -6
\n" ); document.write( "2*(-3) = -6
\n" ); document.write( "(-1)*(6) = -6
\n" ); document.write( "(-2)*(3) = -6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-61+(-6)=-5
2-32+(-3)=-1
-16-1+6=5
-23-2+3=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"2\" and \"-3\" add to \"-1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"2\" and \"-3\" both multiply to \"-6\" and add to \"-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-1s\" with \"2s-3s\". Remember, \"2\" and \"-3\" add to \"-1\". So this shows us that \"2s-3s=-1s\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s%5E2%2Bhighlight%282s-3s%29-6\" Replace the second term \"-1s\" with \"2s-3s\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28s%5E2%2B2s%29%2B%28-3s-6%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s%28s%2B2%29%2B%28-3s-6%29\" Factor out the GCF \"s\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s%28s%2B2%29-3%28s%2B2%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28s-3%29%28s%2B2%29\" Combine like terms. Or factor out the common term \"s%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"s%5E2-s-6\" factors to \"%28s-3%29%28s%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"s%5E2-s-6=%28s-3%29%28s%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28s-3%29%28s%2B2%29\" to get \"s%5E2-s-6\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "
\n" ); document.write( "
\n" );