document.write( "Question 606501: Graph:\r
\n" ); document.write( "\n" ); document.write( "y^2/25-x^2/4=1
\n" ); document.write( "

Algebra.Com's Answer #382118 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Graph:
\n" ); document.write( "y^2/25-x^2/4=1
\n" ); document.write( "This is an equation of a hyperbola with vertical transverse axis. y-term leads
\n" ); document.write( "Its standard form: (y-k)^2/a^2-(x-h)^2/b^2=1, (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given equation:
\n" ); document.write( "center: (0,0)
\n" ); document.write( "a^2=25
\n" ); document.write( "a=5
\n" ); document.write( "vertices: (0,0±a)=(0,0±5)=(0,-5) and (0,5)
\n" ); document.write( "..
\n" ); document.write( "b^2=4
\n" ); document.write( "b=2
\n" ); document.write( "length of conjugate axis=2b=4
\n" ); document.write( "see graph below:
\n" ); document.write( "y=±(25+25x^2/4)^.5
\n" ); document.write( "
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );