document.write( "Question 603270: Identify the conic section, re-write the equation in standard form, list the main characteristics, and graph
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #380718 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Identify the conic section, re-write the equation in standard form, list the main characteristics, and graph \n" ); document.write( "y^2-x^2+2x-6y+7=0 \n" ); document.write( "complete the squares \n" ); document.write( "(y^2-6y+9)-(x^2-2x+1)=-7+9-1 \n" ); document.write( "(y-3)^2-(x-1)^2=2 \n" ); document.write( "(y-3)^2/2-(x-1)^2/2=1 \n" ); document.write( "This is a hyperbola with vertical transverse axis. \n" ); document.write( "Its standard form of equation: (y-k)^2/a^2-(x-h)^2/b^2=1, (h,k)=(x,y) coordinates of center. \n" ); document.write( "For given hyperbola: \n" ); document.write( "equation: (y-3)^2/2-(x-1)^2/2=1 \n" ); document.write( "Center: (1,3) \n" ); document.write( "a^2=2 \n" ); document.write( "a=√2 \n" ); document.write( "length of vertical transverse axis=2a=2√2 \n" ); document.write( "b^2=2 \n" ); document.write( "b=√2 \n" ); document.write( "c^2=a^2+b^2=2+2=4 \n" ); document.write( "c=√4=2 \n" ); document.write( "Foci: (1, 3±c)=(1, 3±2)=(1, 1) and (1,5)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |