document.write( "Question 602454: Prove that the ff equation is an identity:\r
\n" ); document.write( "\n" ); document.write( "((1 - tanX)/(secX)) + ((secX)/(tanX)) = ((1+tanX)/(secX)(tanX))\r
\n" ); document.write( "\n" ); document.write( "I end up with the left side having tan + sec^2 X as the numerator. How should I solve this properly? Please show the steps as well so that I can understand it better. Thank you.
\n" ); document.write( "

Algebra.Com's Answer #380258 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
(1 - tanX)/(secX) + (secX)/(tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(tanX(1 - tanX))/(secX tanX) + (secX)/(tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(tanX - tan^2 X))/(secX tanX) + (secX)/(tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(tanX - tan^2 X))/(secX tanX) + (secX*secX)/(secX tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(tanX - tan^2 X))/(secX tanX) + (sec^2 X)/(secX tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(tanX - tan^2 X + sec^2 X)/(secX tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(tanX + sec^2 X - tan^2 X)/(secX tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(tanX + 1)/(secX tanX) = (1+tanX)/(secX tanX)\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "(1 + tanX)/(secX tanX) = (1+tanX)/(secX tanX) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we've shown that the original equation is indeed a true identity.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );