document.write( "Question 601423: Answer to 6a^2-a-35 \n" ); document.write( "
Algebra.Com's Answer #379747 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"6a%5E2-a-35\", we can see that the first coefficient is \"6\", the second coefficient is \"-1\", and the last term is \"-35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"6\" by the last term \"-35\" to get \"%286%29%28-35%29=-210\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-210\" (the previous product) and add to the second coefficient \"-1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-210\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-210\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-7,-10,-14,-15,-21,-30,-35,-42,-70,-105,-210\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-210\".\r
\n" ); document.write( "\n" ); document.write( "1*(-210) = -210
\n" ); document.write( "2*(-105) = -210
\n" ); document.write( "3*(-70) = -210
\n" ); document.write( "5*(-42) = -210
\n" ); document.write( "6*(-35) = -210
\n" ); document.write( "7*(-30) = -210
\n" ); document.write( "10*(-21) = -210
\n" ); document.write( "14*(-15) = -210
\n" ); document.write( "(-1)*(210) = -210
\n" ); document.write( "(-2)*(105) = -210
\n" ); document.write( "(-3)*(70) = -210
\n" ); document.write( "(-5)*(42) = -210
\n" ); document.write( "(-6)*(35) = -210
\n" ); document.write( "(-7)*(30) = -210
\n" ); document.write( "(-10)*(21) = -210
\n" ); document.write( "(-14)*(15) = -210\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-2101+(-210)=-209
2-1052+(-105)=-103
3-703+(-70)=-67
5-425+(-42)=-37
6-356+(-35)=-29
7-307+(-30)=-23
10-2110+(-21)=-11
14-1514+(-15)=-1
-1210-1+210=209
-2105-2+105=103
-370-3+70=67
-542-5+42=37
-635-6+35=29
-730-7+30=23
-1021-10+21=11
-1415-14+15=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"14\" and \"-15\" add to \"-1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"14\" and \"-15\" both multiply to \"-210\" and add to \"-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-1a\" with \"14a-15a\". Remember, \"14\" and \"-15\" add to \"-1\". So this shows us that \"14a-15a=-1a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6a%5E2%2Bhighlight%2814a-15a%29-35\" Replace the second term \"-1a\" with \"14a-15a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286a%5E2%2B14a%29%2B%28-15a-35%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2a%283a%2B7%29%2B%28-15a-35%29\" Factor out the GCF \"2a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2a%283a%2B7%29-5%283a%2B7%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282a-5%29%283a%2B7%29\" Combine like terms. Or factor out the common term \"3a%2B7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6a%5E2-a-35\" factors to \"%282a-5%29%283a%2B7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"6a%5E2-a-35=%282a-5%29%283a%2B7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282a-5%29%283a%2B7%29\" to get \"6a%5E2-a-35\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );