document.write( "Question 601326: the directions are to graph the equation. identify the vertices, foci, and asymptotes or the hyperbola. the problem is:\r
\n" );
document.write( "\n" );
document.write( "y^2/49 - x^2/121 =1 \n" );
document.write( "
Algebra.Com's Answer #379689 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! the directions are to graph the equation. identify the vertices, foci, and asymptotes or the hyperbola. the problem is: \n" ); document.write( "y^2/49 - x^2/121 =1 \n" ); document.write( "This is an equation for a hyperbola with vertical transverse axis: \n" ); document.write( "Its standard form: (y-k)^2/a^2-(x-h)^2/b^2=1, (h,k)=(x,y) coordinates of center \n" ); document.write( "For given equation: y^2/49 - x^2/121 =1 \n" ); document.write( "center: (0,0) \n" ); document.write( "a^2=49 \n" ); document.write( "a=√49=7 \n" ); document.write( "vertices: (0,0±a)=(0,0±7)=(0,-7) and (0,7) \n" ); document.write( ".. \n" ); document.write( "b^2=121 \n" ); document.write( "b=√121=11 \n" ); document.write( ".. \n" ); document.write( "c^2=a^2+b^2 \n" ); document.write( "c^2=49+121 \n" ); document.write( "c=√170≈13.04 \n" ); document.write( "Foci: (0,0±c)=(0,0±13.04)=(0,-13.04) and (0,13.04) \n" ); document.write( ".. \n" ); document.write( "Asymptotes: \n" ); document.write( "Slope of asymptotes: ±a/b=±7/11 \n" ); document.write( "Asymptotes are straight lines that go thru the center (0,0) \n" ); document.write( "Standard form of equation: y=mx+b, m=slope, b=y-intercept \n" ); document.write( "y-intercept=0 \n" ); document.write( "Equations: \n" ); document.write( "y=7x/11 \n" ); document.write( "and \n" ); document.write( "y=-7x/11 \n" ); document.write( "see graph below:\r \n" ); document.write( "\n" ); document.write( "y=±(49+49x^2/121)^.5\r \n" ); document.write( "\n" ); document.write( " |