document.write( "Question 601326: the directions are to graph the equation. identify the vertices, foci, and asymptotes or the hyperbola. the problem is:\r
\n" ); document.write( "\n" ); document.write( "y^2/49 - x^2/121 =1
\n" ); document.write( "

Algebra.Com's Answer #379689 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
the directions are to graph the equation. identify the vertices, foci, and asymptotes or the hyperbola. the problem is:
\n" ); document.write( "y^2/49 - x^2/121 =1
\n" ); document.write( "This is an equation for a hyperbola with vertical transverse axis:
\n" ); document.write( "Its standard form: (y-k)^2/a^2-(x-h)^2/b^2=1, (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given equation: y^2/49 - x^2/121 =1
\n" ); document.write( "center: (0,0)
\n" ); document.write( "a^2=49
\n" ); document.write( "a=√49=7
\n" ); document.write( "vertices: (0,0±a)=(0,0±7)=(0,-7) and (0,7)
\n" ); document.write( "..
\n" ); document.write( "b^2=121
\n" ); document.write( "b=√121=11
\n" ); document.write( "..
\n" ); document.write( "c^2=a^2+b^2
\n" ); document.write( "c^2=49+121
\n" ); document.write( "c=√170≈13.04
\n" ); document.write( "Foci: (0,0±c)=(0,0±13.04)=(0,-13.04) and (0,13.04)
\n" ); document.write( "..
\n" ); document.write( "Asymptotes:
\n" ); document.write( "Slope of asymptotes: ±a/b=±7/11
\n" ); document.write( "Asymptotes are straight lines that go thru the center (0,0)
\n" ); document.write( "Standard form of equation: y=mx+b, m=slope, b=y-intercept
\n" ); document.write( "y-intercept=0
\n" ); document.write( "Equations:
\n" ); document.write( "y=7x/11
\n" ); document.write( "and
\n" ); document.write( "y=-7x/11
\n" ); document.write( "see graph below:\r
\n" ); document.write( "\n" ); document.write( "y=±(49+49x^2/121)^.5\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );