document.write( "Question 599416: 15y^2-y-2 \n" ); document.write( "
Algebra.Com's Answer #378938 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"15y%5E2-y-2\", we can see that the first coefficient is \"15\", the second coefficient is \"-1\", and the last term is \"-2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"15\" by the last term \"-2\" to get \"%2815%29%28-2%29=-30\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-30\" (the previous product) and add to the second coefficient \"-1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-30\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-30\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,10,15,30\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-10,-15,-30\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-30\".\r
\n" ); document.write( "\n" ); document.write( "1*(-30) = -30
\n" ); document.write( "2*(-15) = -30
\n" ); document.write( "3*(-10) = -30
\n" ); document.write( "5*(-6) = -30
\n" ); document.write( "(-1)*(30) = -30
\n" ); document.write( "(-2)*(15) = -30
\n" ); document.write( "(-3)*(10) = -30
\n" ); document.write( "(-5)*(6) = -30\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-301+(-30)=-29
2-152+(-15)=-13
3-103+(-10)=-7
5-65+(-6)=-1
-130-1+30=29
-215-2+15=13
-310-3+10=7
-56-5+6=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"5\" and \"-6\" add to \"-1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"5\" and \"-6\" both multiply to \"-30\" and add to \"-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-1y\" with \"5y-6y\". Remember, \"5\" and \"-6\" add to \"-1\". So this shows us that \"5y-6y=-1y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"15y%5E2%2Bhighlight%285y-6y%29-2\" Replace the second term \"-1y\" with \"5y-6y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2815y%5E2%2B5y%29%2B%28-6y-2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5y%283y%2B1%29%2B%28-6y-2%29\" Factor out the GCF \"5y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5y%283y%2B1%29-2%283y%2B1%29\" Factor out \"2\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285y-2%29%283y%2B1%29\" Combine like terms. Or factor out the common term \"3y%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"15y%5E2-y-2\" factors to \"%285y-2%29%283y%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"15y%5E2-y-2=%285y-2%29%283y%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%285y-2%29%283y%2B1%29\" to get \"15y%5E2-y-2\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );