document.write( "Question 599299: the length of a rectangular garden is 5 m greater than the width. the area is 104m^2. find the dimensions of the garden. \n" ); document.write( "
Algebra.Com's Answer #378892 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
A = LW\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "104 = (W+5)W\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "104 = W(W+5)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W^2 + 5W - 104 = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now use the quadratic formula to solve\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = (-b+-sqrt(b^2-4ac))/(2a)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = (-(5)+-sqrt((5)^2-4(1)(-104)))/(2(1))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = (-5+-sqrt(25-(-416)))/(2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = (-5+-sqrt(441))/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = (-5+sqrt(441))/2 or W = (-5-sqrt(441))/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = (-5+21)/2 or W = (-5-21)/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = 16/2 or W = -26/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = 8 or W = -13\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Throw out the negative solution to be left with the only solution of W = 8\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the width is 8 m and length is 13 m (since L = W+5 = 8+5 = 13)
\n" ); document.write( "
\n" );