document.write( "Question 598657: :( I need help desperately, I was absent throughout this entire section :(
\n" ); document.write( "please help. i'm crying , i cant do it all\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is Solving substitution by elimination.\r
\n" ); document.write( "\n" ); document.write( "====\r
\n" ); document.write( "\n" ); document.write( "4)
\n" ); document.write( "-5x+2y=-2
\n" ); document.write( "-7x-2y=-24\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5)
\n" ); document.write( "-2x-y=-3
\n" ); document.write( "5x+y=12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "12)
\n" ); document.write( "y=-4x-10
\n" ); document.write( "y=-7x+12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "13)
\n" ); document.write( "y=3x+14
\n" ); document.write( "y=-2x+4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "14)
\n" ); document.write( "y=2x-1
\n" ); document.write( "2x-7y=-17\r
\n" ); document.write( "\n" ); document.write( "15)
\n" ); document.write( "y=-3x-6
\n" ); document.write( "7x+3y=-14\r
\n" ); document.write( "\n" ); document.write( "16)
\n" ); document.write( "3x+y=-2
\n" ); document.write( "-6x-y=2\r
\n" ); document.write( "\n" ); document.write( "17)
\n" ); document.write( "6x-2y=-24
\n" ); document.write( "7x+y=-18
\n" ); document.write( "

Algebra.Com's Answer #378664 by math-vortex(648)\"\" \"About 
You can put this solution on YOUR website!
Hi, there (again)--
\n" ); document.write( ".
\n" ); document.write( "The elimination method of solving systems of equations is also called the addition method. Let's solve the following system using addition/elimination.
\n" ); document.write( ".
\n" ); document.write( "-5x + 2y = - 2
\n" ); document.write( "-7x - 2y = -24
\n" ); document.write( ".
\n" ); document.write( "Note that, if we add down, the y-terms will cancel out because 2y +(-2y) = 0. We'll draw an \"equals\" bar under the system, and add down. (We are adding like terms together.)
\n" ); document.write( ".
\n" ); document.write( "-5x + 2y = - 2
\n" ); document.write( "-7x - 2y = -24
\n" ); document.write( "-----------------
\n" ); document.write( "-12x = -26
\n" ); document.write( ".
\n" ); document.write( "We have eliminated the y-term. Now we can divide both sides of the new equation by -12 to solve for x.
\n" ); document.write( ".
\n" ); document.write( "x = (-26)/(-12)
\n" ); document.write( "x = 13/6
\n" ); document.write( ".
\n" ); document.write( "We want to know what the y-value is when x=13/6, so we substitute 13/6 for y in one of the original equations. It doesn't matter which one we choose. Let's use the first equation since the numbers are a little smaller.
\n" ); document.write( ".
\n" ); document.write( "-5x + 2y = - 2
\n" ); document.write( "-5*(13/6) + 2y = -2
\n" ); document.write( ".
\n" ); document.write( "Now we'll simplify the equation and solve for y.
\n" ); document.write( "-65/6 + 2y = -2
\n" ); document.write( "2y = -2 + 65/6
\n" ); document.write( "2y = -12/6 + 65/6
\n" ); document.write( "2y = 53/6
\n" ); document.write( "y = (53/6) / 2
\n" ); document.write( "y = 53/12
\n" ); document.write( ".
\n" ); document.write( "Using the elimination method we find that the ordered pair (x,y)=(13/6, 53/12) is the solution for this system.
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "You should ALWAYS check your solution in both equations because it's quite easy to make an arithmetic error when using the elimination method.
\n" ); document.write( ".
\n" ); document.write( "FIRST EQUATION:
\n" ); document.write( "-5x + 2y = - 2
\n" ); document.write( "-5*(13/6) + 2*(53/12) = -2
\n" ); document.write( "-65/6 + 106/12 = -2
\n" ); document.write( "-130/12 + 106/12 = -2
\n" ); document.write( "-24/12 = -2
\n" ); document.write( "-2 = -2
\n" ); document.write( "Check!
\n" ); document.write( ".
\n" ); document.write( "SECOND EQUATION
\n" ); document.write( "-7x - 2y = -24
\n" ); document.write( "-7(13/6) - 2(53/12) = -24
\n" ); document.write( "-91/6 - 106/12 = -24
\n" ); document.write( "-182/12 - 106/12 = -24
\n" ); document.write( "-288/12 = -24
\n" ); document.write( "-24 = -24
\n" ); document.write( "Check!
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "Know we know for sure that the ordered pair (x,y)=(13/6, 53/12) is the solution for this system.
\n" ); document.write( ".
\n" ); document.write( "This was the simplest case of the elimination method because we add like terms in each equation with opposite signs [2y and -2y).
\n" ); document.write( ".
\n" ); document.write( "Make sure you understand this solution now. Then try problem #5 yourself. It's very similar.
\n" ); document.write( ".
\n" ); document.write( "-----------------------
\n" ); document.write( ".
\n" ); document.write( "As you post on algebra.com in the future, I suggest you post one, or perhaps two. problems at a time. Most tutors will provide more explanation if you do that.
\n" ); document.write( ".
\n" ); document.write( "Good luck,
\n" ); document.write( "Ms.Figgy
\n" ); document.write( "math.in.the.vortex@gmail.com
\n" ); document.write( "
\n" );