document.write( "Question 598440: Direction: Write an equation for each hyperbola. \r
\n" );
document.write( "\n" );
document.write( "vertices: (1,1) and (1,-3)
\n" );
document.write( "foci: {1, -1 +or- sqrt(5)}\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "I would like to say please and thank you for helping me, in advance.(: \n" );
document.write( "
Algebra.Com's Answer #378587 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Direction: Write an equation for each hyperbola. \n" ); document.write( "vertices: (1,1) and (1,-3) \n" ); document.write( "foci: {1, -1 +or- sqrt(5)} \n" ); document.write( "** \n" ); document.write( "This is a hyperbola with vertical transverse axis. \n" ); document.write( "Its standard form of equation: (y-k)^2/a^2-(x-h)^2/b^2=1, (h,k)=(x,y) coordinates of center. \n" ); document.write( "For given hyperbola: \n" ); document.write( "x-coordinate of center=1 \n" ); document.write( "y-coordinate of center=(1-3)/2=-2/2=-1 (by midpoint formula) \n" ); document.write( "center: (1,-1) \n" ); document.write( "length of vertical transverse axis=4 (-3 to 1)=2a \n" ); document.write( "a=2 \n" ); document.write( "a^2=4 \n" ); document.write( "Given coordinates of Foci: (1,-1±√5)=(1,-1±c) \n" ); document.write( "c=√5 \n" ); document.write( "c^2=5 \n" ); document.write( "c^2=a^2+b^2 \n" ); document.write( "b^2=c^2-a^2=5-4=1 \n" ); document.write( "Equation: \n" ); document.write( "(y+1)^2/4-(x-1)^2/1=1 \n" ); document.write( " |