document.write( "Question 596214: A die is rolled 15 times. What is the probability of at least two 5's appearing? \n" ); document.write( "
Algebra.Com's Answer #377600 by jim_thompson5910(35256) ![]() You can put this solution on YOUR website! Use the binomial probability distribution to compute the probability of getting zero fives (ie P(X = 0)) and the probability of getting one five (ie P(X = 1)) .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X = k) = (n ncr k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "P(X = 0) = (15 ncr 0)*(0.1667)^(0)*(1-0.1667)^(15-0) \n" ); document.write( "P(X = 0) = (15 ncr 0)*(0.1667)^(0)*(0.8333)^(15-0) \n" ); document.write( "P(X = 0) = (1)*(0.1667)^(0)*(0.8333)^15 \n" ); document.write( "P(X = 0) = (1)*(1)*(0.064866) \n" ); document.write( "P(X = 0) = 0.064866\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X = k) = (n ncr k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "P(X = 1) = (15 ncr 1)*(0.1667)^(1)*(1-0.1667)^(15-1) \n" ); document.write( "P(X = 1) = (15 ncr 1)*(0.1667)^(1)*(0.8333)^(15-1) \n" ); document.write( "P(X = 1) = (15)*(0.1667)^(1)*(0.8333)^14 \n" ); document.write( "P(X = 1) = (15)*(0.1667)*(0.077843) \n" ); document.write( "P(X = 1) = 0.194646\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In short, \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X = 0)= 0.064866\r \n" ); document.write( "\n" ); document.write( "P(X = 1)= 0.194646\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now add the two probabilities \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X = 0)+P(X = 1) = 0.064866 + 0.194646\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X = 0)+P(X = 1) = 0.259512\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So P(X <= 1) = 0.259512\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since the binomial distribution is a discrete distribution, this means that \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X >= 2) = 1 - P(X <= 1)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So this means...\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X >= 2) = 1 - P(X <= 1)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X >= 2) = 1 - 0.259512\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P(X >= 2) = 0.740488\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the probability of at least two 5's appearing is approximately 0.740488\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |