document.write( "Question 596131: If x²+x+1=0, then what is the value of (x³+\"1%2Fx%5E3\")³ ?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #377533 by Edwin McCravy(20055)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "Notice that x²+x+1 one of the factors of x³-1 because\r\n" );
document.write( "\r\n" );
document.write( "x³-1 = (x-1)(x²+x+1)\r\n" );
document.write( "\r\n" );
document.write( "Then since x²+x+1 = 0, \r\n" );
document.write( "\r\n" );
document.write( "x³-1 = (x-1)(x²+x+1) = (x-1)(0) = 0\r\n" );
document.write( "\r\n" );
document.write( "and therefore\r\n" );
document.write( "\r\n" );
document.write( " x³-1 = 0\r\n" );
document.write( "   x³ = 1 \r\n" );
document.write( "    x = \"root%283%2C1%29\" \r\n" );
document.write( "    x = 1\r\n" );
document.write( "\r\n" );
document.write( "Therefore  (x³+\"1%2Fx%5E3\")³ = (1³+\"1%2F1%5E3\")³ = (1+\"1%2F1\")³ = (1+1)³ = 2³ = 8\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );