document.write( "Question 596104: 20y^2-25y+5 \n" ); document.write( "
Algebra.Com's Answer #377517 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'm assuming you want to factor.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20y%5E2-25y%2B5\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5%284y%5E2-5y%2B1%29\" Factor out the GCF \"5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"4y%5E2-5y%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4y%5E2-5y%2B1\", we can see that the first coefficient is \"4\", the second coefficient is \"-5\", and the last term is \"1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"1\" to get \"%284%29%281%29=4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"4\" (the previous product) and add to the second coefficient \"-5\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"4\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"4\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"4\".\r
\n" ); document.write( "\n" ); document.write( "1*4 = 4
\n" ); document.write( "2*2 = 4
\n" ); document.write( "(-1)*(-4) = 4
\n" ); document.write( "(-2)*(-2) = 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-5\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
141+4=5
222+2=4
-1-4-1+(-4)=-5
-2-2-2+(-2)=-4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"-4\" add to \"-5\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"-4\" both multiply to \"4\" and add to \"-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-5y\" with \"-y-4y\". Remember, \"-1\" and \"-4\" add to \"-5\". So this shows us that \"-y-4y=-5y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4y%5E2%2Bhighlight%28-y-4y%29%2B1\" Replace the second term \"-5y\" with \"-y-4y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284y%5E2-y%29%2B%28-4y%2B1%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%284y-1%29%2B%28-4y%2B1%29\" Factor out the GCF \"y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%284y-1%29-1%284y-1%29\" Factor out \"1\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y-1%29%284y-1%29\" Combine like terms. Or factor out the common term \"4y-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5%284y%5E2-5y%2B1%29\" then factors further to \"5%28y-1%29%284y-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"20y%5E2-25y%2B5\" completely factors to \"5%28y-1%29%284y-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"20y%5E2-25y%2B5=5%28y-1%29%284y-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"5%28y-1%29%284y-1%29\" to get \"20y%5E2-25y%2B5\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );