document.write( "Question 594954: How do you solve for the dimensions of a rectangle given it's area of 160 and it is incribed in a circle with a diameter of 20 \n" ); document.write( "
Algebra.Com's Answer #376977 by scott8148(6628)\"\" \"About 
You can put this solution on YOUR website!
so the diagonal is 20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L * W = 160 (area equation)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L^2 + W^2 = 20^2 (Pythagoras)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2LW = 320\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L^2 + 2LW + W^2 = 20^2 + 320 ___ (L + W)^2 = 4320 ___ L + W = 12√30\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L^2 - 2LW + W^2 = 20^2 - 320 ___ (L - W)^2 = 3680 ___ L - W = 4√230
\n" ); document.write( "
\n" );