document.write( "Question 594532: Factor each polynomial.
\n" ); document.write( "n^2+n-42
\n" ); document.write( "

Algebra.Com's Answer #376786 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"n%5E2%2Bn-42\", we can see that the first coefficient is \"1\", the second coefficient is \"1\", and the last term is \"-42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-42\" to get \"%281%29%28-42%29=-42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-42\" (the previous product) and add to the second coefficient \"1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-42\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-42\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,7,14,21,42\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-7,-14,-21,-42\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-42\".\r
\n" ); document.write( "\n" ); document.write( "1*(-42) = -42
\n" ); document.write( "2*(-21) = -42
\n" ); document.write( "3*(-14) = -42
\n" ); document.write( "6*(-7) = -42
\n" ); document.write( "(-1)*(42) = -42
\n" ); document.write( "(-2)*(21) = -42
\n" ); document.write( "(-3)*(14) = -42
\n" ); document.write( "(-6)*(7) = -42\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-421+(-42)=-41
2-212+(-21)=-19
3-143+(-14)=-11
6-76+(-7)=-1
-142-1+42=41
-221-2+21=19
-314-3+14=11
-67-6+7=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-6\" and \"7\" add to \"1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-6\" and \"7\" both multiply to \"-42\" and add to \"1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"1n\" with \"-6n%2B7n\". Remember, \"-6\" and \"7\" add to \"1\". So this shows us that \"-6n%2B7n=1n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"n%5E2%2Bhighlight%28-6n%2B7n%29-42\" Replace the second term \"1n\" with \"-6n%2B7n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28n%5E2-6n%29%2B%287n-42%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"n%28n-6%29%2B%287n-42%29\" Factor out the GCF \"n\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"n%28n-6%29%2B7%28n-6%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28n%2B7%29%28n-6%29\" Combine like terms. Or factor out the common term \"n-6\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"n%5E2%2Bn-42\" factors to \"%28n%2B7%29%28n-6%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"n%5E2%2Bn-42=%28n%2B7%29%28n-6%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28n%2B7%29%28n-6%29\" to get \"n%5E2%2Bn-42\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );