document.write( "Question 594307: simplify fully
\n" );
document.write( "n!-2(n-2)! / (n-2)(n-2)! \n" );
document.write( "
Algebra.Com's Answer #376688 by mamiya(56)![]() ![]() ![]() You can put this solution on YOUR website! n!-2(n-2)! / (n-2)(n-2)!\r \n" ); document.write( "\n" ); document.write( "n!-2(n-2)!/ (n-2)(n-2)! = (n(n-1)(n-2)! -2(n-2)! ) / ( (n-2)(n-2)!) \n" ); document.write( " = (n(n-1) -2 )/ (n-2) \n" ); document.write( " = (n^2 -n -2)/ (n-2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " At this point, we have to look for the factors of n^2-n-2, if it exists\r \n" ); document.write( "\n" ); document.write( "Using the quadratic formula, we get \n" ); document.write( " n^2-n-2=0 , --> n= (1- sqrt( 1-4(-2)) )/2 or n = (1+sqrt( 1-4(-2))) /2 \n" ); document.write( " so n= -1 or n=2\r \n" ); document.write( "\n" ); document.write( "this means the factorization of n^2-n-2 is (n-2)(n+1) \n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( " so, n!-2(n-2)!/(n-2)(n-2)! = (n+1)(n-2)/ (n-2) \n" ); document.write( " = n+1\r \n" ); document.write( "\n" ); document.write( "so the complete simplification of n!-2(n-2)!/(n-2)(n-2)! is n+1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |