document.write( "Question 593881: factor z^2+8z+12 \n" ); document.write( "
Algebra.Com's Answer #376508 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"z%5E2%2B8z%2B12\", we can see that the first coefficient is \"1\", the second coefficient is \"8\", and the last term is \"12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"12\" to get \"%281%29%2812%29=12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"12\" (the previous product) and add to the second coefficient \"8\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"12\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"12\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,12\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-12\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"12\".\r
\n" ); document.write( "\n" ); document.write( "1*12 = 12
\n" ); document.write( "2*6 = 12
\n" ); document.write( "3*4 = 12
\n" ); document.write( "(-1)*(-12) = 12
\n" ); document.write( "(-2)*(-6) = 12
\n" ); document.write( "(-3)*(-4) = 12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"8\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1121+12=13
262+6=8
343+4=7
-1-12-1+(-12)=-13
-2-6-2+(-6)=-8
-3-4-3+(-4)=-7
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"2\" and \"6\" add to \"8\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"2\" and \"6\" both multiply to \"12\" and add to \"8\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"8z\" with \"2z%2B6z\". Remember, \"2\" and \"6\" add to \"8\". So this shows us that \"2z%2B6z=8z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%5E2%2Bhighlight%282z%2B6z%29%2B12\" Replace the second term \"8z\" with \"2z%2B6z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z%5E2%2B2z%29%2B%286z%2B12%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%28z%2B2%29%2B%286z%2B12%29\" Factor out the GCF \"z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%28z%2B2%29%2B6%28z%2B2%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z%2B6%29%28z%2B2%29\" Combine like terms. Or factor out the common term \"z%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"z%5E2%2B8z%2B12\" factors to \"%28z%2B6%29%28z%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"z%5E2%2B8z%2B12=%28z%2B6%29%28z%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28z%2B6%29%28z%2B2%29\" to get \"z%5E2%2B8z%2B12\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "
\n" );