document.write( "Question 591913: write an equation in vertex form then graph it. Label center,verticies,co-verticies and the foci> x^2+4y^2=16 \n" ); document.write( "
Algebra.Com's Answer #375834 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! write an equation in vertex form then graph it. Label center,verticies,co-verticies and the foci> x^2+4y^2=16 \n" ); document.write( "divide by 16 \n" ); document.write( "x^2/16+y^2/4=1 \n" ); document.write( "This is an equation of an ellipse with horizontal major axis of the standard form: \n" ); document.write( "(x-h)^2/a^2=(y-k)^2/b^2=1,a>b, (h,k)=(x,y) coordinates of center. \n" ); document.write( "For given ellipse: \n" ); document.write( "center:(0,0) \n" ); document.write( "a^2=16 \n" ); document.write( "a=√16=4 \n" ); document.write( "vertices: (0±a,0)=(0±4,0)=(-4,0) and (4,0) \n" ); document.write( ".. \n" ); document.write( "b^2=4 \n" ); document.write( "b=√4=2 \n" ); document.write( "co-vertices: (0,0±b)= (0,0±2)=(0,-2) and (0,2) \n" ); document.write( ".. \n" ); document.write( "c^2=a^2-b^2=16-4=12 \n" ); document.write( "c=√12≈3.46 \n" ); document.write( "Foci:(0±c,0)=(0±√12,0)=(-3.46,0) and (3.46,0) \n" ); document.write( "see graph below: \n" ); document.write( "y=±(4-x^2/4)^.5\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |