document.write( "Question 590911: Would someone show me how to do this step by step?
\n" ); document.write( "Factor completely\r
\n" ); document.write( "\n" ); document.write( "5s^2 - 22s + 8
\n" ); document.write( "

Algebra.Com's Answer #375350 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"5s%5E2-22s%2B8\", we can see that the first coefficient is \"5\", the second coefficient is \"-22\", and the last term is \"8\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"5\" by the last term \"8\" to get \"%285%29%288%29=40\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"40\" (the previous product) and add to the second coefficient \"-22\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"40\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"40\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,8,10,20,40\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-8,-10,-20,-40\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"40\".\r
\n" ); document.write( "\n" ); document.write( "1*40 = 40
\n" ); document.write( "2*20 = 40
\n" ); document.write( "4*10 = 40
\n" ); document.write( "5*8 = 40
\n" ); document.write( "(-1)*(-40) = 40
\n" ); document.write( "(-2)*(-20) = 40
\n" ); document.write( "(-4)*(-10) = 40
\n" ); document.write( "(-5)*(-8) = 40\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-22\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1401+40=41
2202+20=22
4104+10=14
585+8=13
-1-40-1+(-40)=-41
-2-20-2+(-20)=-22
-4-10-4+(-10)=-14
-5-8-5+(-8)=-13
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-2\" and \"-20\" add to \"-22\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-2\" and \"-20\" both multiply to \"40\" and add to \"-22\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-22s\" with \"-2s-20s\". Remember, \"-2\" and \"-20\" add to \"-22\". So this shows us that \"-2s-20s=-22s\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5s%5E2%2Bhighlight%28-2s-20s%29%2B8\" Replace the second term \"-22s\" with \"-2s-20s\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285s%5E2-2s%29%2B%28-20s%2B8%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s%285s-2%29%2B%28-20s%2B8%29\" Factor out the GCF \"s\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s%285s-2%29-4%285s-2%29\" Factor out \"4\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28s-4%29%285s-2%29\" Combine like terms. Or factor out the common term \"5s-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5s%5E2-22s%2B8\" factors to \"%28s-4%29%285s-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"5s%5E2-22s%2B8=%28s-4%29%285s-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28s-4%29%285s-2%29\" to get \"5s%5E2-22s%2B8\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "
\n" );