document.write( "Question 588602: write equation in standard form for each hyperbola
\n" ); document.write( " vertices (11,0) &' (-11,0) and conjugate axis length 8
\n" ); document.write( "

Algebra.Com's Answer #374543 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
write equation in standard form for each hyperbola
\n" ); document.write( "vertices (11,0) &' (-11,0) and conjugate axis length 8
\n" ); document.write( "**
\n" ); document.write( "Standard form of equation for a hyperbola with horizontal transverse axis:
\n" ); document.write( "(x-h)^2/a^2-(y-k)^2/b^2=1, (h,k) being the (x,y) coordinates of the center.
\n" ); document.write( "For given hyperbola:
\n" ); document.write( "center: (0,0)
\n" ); document.write( "length of horizontal transverse axis=22=2a (-11 to 11)
\n" ); document.write( "a=11
\n" ); document.write( "a^2=121
\n" ); document.write( "Given length of conjugate axis =8=2b
\n" ); document.write( "b=4
\n" ); document.write( "b^2=16
\n" ); document.write( "Equation of hyperbola:
\n" ); document.write( "x^2/121-y^2/16=1
\n" ); document.write( "
\n" );