document.write( "Question 588602: write equation in standard form for each hyperbola
\n" );
document.write( " vertices (11,0) &' (-11,0) and conjugate axis length 8 \n" );
document.write( "
Algebra.Com's Answer #374543 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! write equation in standard form for each hyperbola \n" ); document.write( "vertices (11,0) &' (-11,0) and conjugate axis length 8 \n" ); document.write( "** \n" ); document.write( "Standard form of equation for a hyperbola with horizontal transverse axis: \n" ); document.write( "(x-h)^2/a^2-(y-k)^2/b^2=1, (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "For given hyperbola: \n" ); document.write( "center: (0,0) \n" ); document.write( "length of horizontal transverse axis=22=2a (-11 to 11) \n" ); document.write( "a=11 \n" ); document.write( "a^2=121 \n" ); document.write( "Given length of conjugate axis =8=2b \n" ); document.write( "b=4 \n" ); document.write( "b^2=16 \n" ); document.write( "Equation of hyperbola: \n" ); document.write( "x^2/121-y^2/16=1 \n" ); document.write( " |