document.write( "Question 583145: My paper says: Find the value of the discriminant for 9x^2+1=6x. Then describe the number and type of roots for the equation..... I already found the discriminant to be -72 i just dont know how to do the last part \n" ); document.write( "
Algebra.Com's Answer #372357 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The discriminant is: \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Your quadratic in standard form\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So , , and \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first thing for you to do is to write back and tell me how you managed to get out of\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and how you managed to get anything involving when you didn't take a square root anywhere.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the following to determine the nature of the roots:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find the Discriminant, and evaluate the nature of the roots as follows:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "No calculation quick look: If the signs on and are opposite, then 0\"> guaranteed.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " 0 \ \ \Rightarrow\ \\"> Two real and unequal roots. If is a perfect square, the quadratic factors over (the rationals).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " One real root with a multiplicity of two. That is to say that the trinomial is a perfect square and has two identical factors. Presuming rational coefficients, the root will be rational as well.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " A conjugate pair of complex roots of the form where is the imaginary number defined by \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "
\n" ); document.write( "
\n" );