document.write( "Question 581360: What is the focus of this parabola?\r
\n" ); document.write( "\n" ); document.write( "X^2 + 12X - 24Y + 84 = 0
\n" ); document.write( "

Algebra.Com's Answer #371644 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
What is the focus of this parabola?
\n" ); document.write( "X^2 + 12X - 24Y + 84 = 0
\n" ); document.write( "complete the square
\n" ); document.write( "(x^2+12x+36)-24y+84-36=0
\n" ); document.write( "(x+6)^2-24y+48=0
\n" ); document.write( "(x+6)^2=24y-48
\n" ); document.write( "(x+6)^2=24(y-2)
\n" ); document.write( "This is an equation of a parabola which opens upwards of the standard form: (x-h)^2=4p(y-k), (h\n" ); document.write( "For given equation:
\n" ); document.write( "vertex: (-6,2)
\n" ); document.write( "axis of symmetry: x=-6
\n" ); document.write( "4p=24
\n" ); document.write( "p=6
\n" ); document.write( "x-coordinate of focus=-6
\n" ); document.write( "y-coordinate of focus=8 (p units above the vertex on the axis of symmetry)
\n" ); document.write( "focus: (-6,8)
\n" ); document.write( "
\n" ); document.write( "
\n" );