document.write( "Question 580381: The sum of the digits in a two-digit number is 7. The new number obtained when the digits are reversed is 27 less than the original number. Find the original number \n" ); document.write( "
Algebra.Com's Answer #371221 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
let the two digit number be xy
\n" ); document.write( "x in the ten's place & y in units place \r
\n" ); document.write( "\n" ); document.write( "x+y=7........................(1)\r
\n" ); document.write( "\n" ); document.write( "10y+x= 10x+y-27\r
\n" ); document.write( "\n" ); document.write( "9y-9x=27
\n" ); document.write( "/9
\n" ); document.write( "y-x=3........................(2)\r
\n" ); document.write( "\n" ); document.write( "Add (1) & (2) \r
\n" ); document.write( "\n" ); document.write( "2y= 7+3
\n" ); document.write( "2y=10
\n" ); document.write( "y=5\r
\n" ); document.write( "\n" ); document.write( "x+y =7
\n" ); document.write( "y=5
\n" ); document.write( "so x= 2\r
\n" ); document.write( "\n" ); document.write( "The number is 25
\n" ); document.write( "
\n" ); document.write( "
\n" );