document.write( "Question 580381: The sum of the digits in a two-digit number is 7. The new number obtained when the digits are reversed is 27 less than the original number. Find the original number \n" ); document.write( "
Algebra.Com's Answer #371221 by mananth(16946) You can put this solution on YOUR website! let the two digit number be xy \n" ); document.write( "x in the ten's place & y in units place \r \n" ); document.write( "\n" ); document.write( "x+y=7........................(1)\r \n" ); document.write( "\n" ); document.write( "10y+x= 10x+y-27\r \n" ); document.write( "\n" ); document.write( "9y-9x=27 \n" ); document.write( "/9 \n" ); document.write( "y-x=3........................(2)\r \n" ); document.write( "\n" ); document.write( "Add (1) & (2) \r \n" ); document.write( "\n" ); document.write( "2y= 7+3 \n" ); document.write( "2y=10 \n" ); document.write( "y=5\r \n" ); document.write( "\n" ); document.write( "x+y =7 \n" ); document.write( "y=5 \n" ); document.write( "so x= 2\r \n" ); document.write( "\n" ); document.write( "The number is 25 \n" ); document.write( " \n" ); document.write( " |