document.write( "Question 579216: Find a general form of an equation for the perpendicular bisector of the segment AB.A(8,4)B(-4,14) \n" ); document.write( "
Algebra.Com's Answer #370908 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
.A(8,4)B(-4,14)\r
\n" ); document.write( "\n" ); document.write( "First find the midpoint co ordinates (x,y)
\n" ); document.write( "x= (x1+x2)/2
\n" ); document.write( "y=(y1+y2)/2\r
\n" ); document.write( "\n" ); document.write( "x=(8-4)/2 = 2
\n" ); document.write( "y= (14+4)/2 = 9\r
\n" ); document.write( "\n" ); document.write( "The perpendicular bisector passes through (2,9)\r
\n" ); document.write( "\n" ); document.write( "Find the slope of the line, A(8,4)B(-4,14)\r
\n" ); document.write( "\n" ); document.write( "x1 y1 x2 y2
\n" ); document.write( "8 4 -4 14
\n" ); document.write( "
\n" ); document.write( "slope m = (y2-y1)/(x2-x1)
\n" ); document.write( "(14-4)/(-4-8)
\n" ); document.write( "( 10 / -12 )
\n" ); document.write( "m= - 5/ 6 \r
\n" ); document.write( "\n" ); document.write( "the line perpendicular to this line will have a slope of (6/5) ( negative reciprocal)
\n" ); document.write( "The slope of the perpendicular line is (6/5) and it passes through (2,9)
\n" ); document.write( "m= 6/ 5
\n" ); document.write( "
\n" ); document.write( "Plug value of the slope and point( 2 , 9 ) in
\n" ); document.write( "y=mx+b
\n" ); document.write( "9.00 = 6/5 * 2 +b
\n" ); document.write( "b= 9-12/5
\n" ); document.write( "
\n" ); document.write( "b= 33/ 5
\n" ); document.write( "So the equation will be
\n" ); document.write( "Y = 6/5 x + 33/5
\n" ); document.write( "
\n" ); document.write( "m.ananth@hotmail.ca
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" );