document.write( "Question 573848: use the information provided to write the vertex form equation of each parabola.
\n" );
document.write( "vertex(-6,9) focus (-6,109/12) \n" );
document.write( "
Algebra.Com's Answer #369261 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! use the information provided to write the vertex form equation of each parabola. \n" ); document.write( "vertex(-6,9) focus (-6,109/12) \n" ); document.write( "** \n" ); document.write( "Standard form of equation for parabola opening upwards: \n" ); document.write( "(x-h)^2=4p(y-k), (h,k) being the (x,y) coordinates of the center. \n" ); document.write( "For given parabola: \n" ); document.write( "vertex: (-6,9) (given) \n" ); document.write( "axis of symmetry:x=-6 \n" ); document.write( "p=(109/12)-9=(109/12)-(108/12)=1/12 (distance from vertex to focus on the axis of symmetry) \n" ); document.write( "4p=4/12=1/3 \n" ); document.write( "equation: \n" ); document.write( "(x+6)^2=(1/3)(y-9) \n" ); document.write( " |