document.write( "Question 573848: use the information provided to write the vertex form equation of each parabola.
\n" ); document.write( "vertex(-6,9) focus (-6,109/12)
\n" ); document.write( "

Algebra.Com's Answer #369261 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
use the information provided to write the vertex form equation of each parabola.
\n" ); document.write( "vertex(-6,9) focus (-6,109/12)
\n" ); document.write( "**
\n" ); document.write( "Standard form of equation for parabola opening upwards:
\n" ); document.write( "(x-h)^2=4p(y-k), (h,k) being the (x,y) coordinates of the center.
\n" ); document.write( "For given parabola:
\n" ); document.write( "vertex: (-6,9) (given)
\n" ); document.write( "axis of symmetry:x=-6
\n" ); document.write( "p=(109/12)-9=(109/12)-(108/12)=1/12 (distance from vertex to focus on the axis of symmetry)
\n" ); document.write( "4p=4/12=1/3
\n" ); document.write( "equation:
\n" ); document.write( "(x+6)^2=(1/3)(y-9)
\n" ); document.write( "
\n" );