document.write( "Question 571036: For a polynomial f(x) with real coefficients having given the degree and zeros.\r
\n" ); document.write( "\n" ); document.write( "Degree 4; zeros:-2-5i; 5 multiplicity 2
\n" ); document.write( "

Algebra.Com's Answer #367951 by reviewermath(1029)\"\" \"About 
You can put this solution on YOUR website!
The conjugate of -2-5i is -2+5i. We first get a quadratic equation having -2-5i and -2+5i as roots.
\n" ); document.write( "sum = (-2-5i) + (-2+5i) = -4
\n" ); document.write( "product = (-2-5i)(-2+5i) = 29
\n" ); document.write( "\"x%5E2-+%28sum%29x+%2B+product+=+0\"
\n" ); document.write( "The quadratic equation is \"x%5E2+%2B+4x+%2B+29+=+0\"\r
\n" ); document.write( "\n" ); document.write( "Next, we get the quadratic equation having 5 as a double root.\r
\n" ); document.write( "\n" ); document.write( "The quadratic equation is \"%28x-5%29%5E2+=+0\"\r
\n" ); document.write( "\n" ); document.write( "We multiply the two quadratic equations to get the polynomial of degree 4.\r
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2+%2B+4x+%2B+29%29%2A%28x-5%29%5E2+=+0\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E4+-6x%5E3+%2B14x%5E2+-190x+%2B+725+=+0\"\r
\n" ); document.write( "\n" ); document.write( "Answer: \"x%5E4+-6x%5E3+%2B14x%5E2+-190x+%2B+725+=+0\"
\n" ); document.write( "
\n" );