document.write( "Question 567212: In a three-digit number, the digit at the hundreds place is three times the digit at the ones place and the sum of the digits is 15. If the digits are reversed, the number is reduced by 396. Find the number (Ans. 672) \n" ); document.write( "
Algebra.Com's Answer #366486 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
In a three-digit number, the digit at the hundreds place is three times the digit at the ones place and the sum of the digits is 15. If the digits are reversed, the number is reduced by 396. Find the number (Ans. 672)
\n" ); document.write( "**
\n" ); document.write( "let u=units digit
\n" ); document.write( "let t=tens digit
\n" ); document.write( "let h=hundreds digit
\n" ); document.write( "..
\n" ); document.write( "h=3u
\n" ); document.write( "u+t+h=15
\n" ); document.write( "original number: 100h+10t+u
\n" ); document.write( "reversed number:100u+10t+h
\n" ); document.write( "original number-reversed number=396
\n" ); document.write( "(100h+10t+u)-(100u+10t+h)=396
\n" ); document.write( "100h+10t+u-100u-10t-h=396
\n" ); document.write( "99h-99u=396
\n" ); document.write( "99(3u)-99u=396
\n" ); document.write( "2u*99=396
\n" ); document.write( "u=396/2*99=2
\n" ); document.write( "h=3u=6
\n" ); document.write( "t=15-t+h=15-8=7
\n" ); document.write( "ans:
\n" ); document.write( "number: 672
\n" ); document.write( "
\n" );