\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "This matrix is in \"row echelon\" form because each\r\n" );
document.write( "row's left-most non-zero element is 1 and they\r\n" );
document.write( "move to the right as we go down the matrix. So the\r\n" );
document.write( "matrix is an abbreviation for this system:\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Removing all the 1 coefficients and the 0 terms:\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We use \"back substitution\".\r\n" );
document.write( "\r\n" );
document.write( "The bottom, fourth, equation is already solved for z,\r\n" );
document.write( "\r\n" );
document.write( "so we substitute -2 for z in the third equation:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Now we substitute 3 for y and -2 for z in the\r\n" );
document.write( "second equation:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Finally we substitute 2 for x, 3 for y \r\n" );
document.write( "and -2 for z in the first equation:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Solution (w,x,y,z) = (1,2,3,-2)\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "