document.write( "Question 554017: the terminal arm of angle ϴ passes through the point R(-15,-8)\r
\n" );
document.write( "\n" );
document.write( "determine the distance from the origin to point R\r
\n" );
document.write( "\n" );
document.write( "determine the exact value of sin ϴ to the nearest tenth of a degree \r
\n" );
document.write( "\n" );
document.write( "can you please answer those 2 questions, i am stuck on them and can you show your work so i can learn from them, \r
\n" );
document.write( "\n" );
document.write( "thank you \n" );
document.write( "
Algebra.Com's Answer #361169 by Theo(13342) You can put this solution on YOUR website! the terminal arm of the angle passes through the point (-15,-8). \n" ); document.write( "this means that the value of x is equal to -15 and the value of y is equal to -8. \n" ); document.write( "this forms a right triangle where the hypotenuse is equal to sqrt(-8)^2 + (-15)^2 = sqrt(289) which equals 17. \n" ); document.write( "the hypotenuse is always positive, no matter which quadrant it is in. \n" ); document.write( "the angle is in quadrant 3. \n" ); document.write( "solve for the absolute value of the angle in this triangle. \n" ); document.write( "sine of the angle is equal to -8/17. \n" ); document.write( "get the arcsine of this for an angle of -28.07248694. \n" ); document.write( "take the absolute value of this to get an angle of 28.07248694. \n" ); document.write( "since this angle is in quadrant 3, the angle you are looking for is 180 degrees plus this angle which equals 208.07248694 degrees which rounds to 208.1 degrees. \n" ); document.write( "see the attached diagram for a picture of what this looks like: \n" ); document.write( " \r\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |